A new deviational asymptotic preserving Monte Carlo method for the homogeneous Boltzmann equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An asymptotic-preserving Monte Carlo method for the Boltzmann equation

In this work, we propose an asymptotic-preserving Monte Carlo method for the Boltzmann equation that is more efficient than the currently available Monte Carlo methods in the fluid dynamic regime. This method is based on the successive penalty method [25], which is an improved BGK-penalization method originally proposed by Filbet-Jin [9]. Here we propose the Monte-Carlo implementation of the me...

متن کامل

Deviational particle Monte Carlo for the Boltzmann equation

The paper describes the deviational particle Monte Carlo method for the Boltzmann equation. The approach is an application of the general “control variates” variance reduction technique to the problem of solving a nonlinear equation. The deviation of the solution from a reference Maxwellian is approximated by a system of positive and negative particles. Previous results from the literature are ...

متن کامل

An asymptotic preserving Monte Carlo method for the multispecies Boltzmann equation

Article history: Received 16 June 2015 Received in revised form 2 November 2015 Accepted 3 November 2015 Available online 11 November 2015

متن کامل

A low-variance deviational simulation Monte Carlo for the Boltzmann equation

We present an efficient particle method for solving the Boltzmann equation. The key ingredients of this work are the variance reduction ideas presented in Baker and Hadjiconstantinou [L.L. Baker, N.G. Hadjiconstantinou, Variance reduction for Monte Carlo solutions of the Boltzmann Equation, Physics of Fluids, 17 (2005) (art. no, 051703)] and a new collision integral formulation which allows the...

متن کامل

Efficient asymptotic preserving deterministic methods for the Boltzmann equation

1 The Boltzmann equation 6 1.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Physical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Fluid limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Other collis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Sciences

سال: 2020

ISSN: 1539-6746,1945-0796

DOI: 10.4310/cms.2020.v18.n8.a10